

(CHEMISTRY)

Acids, Bases and Salts

1. Acid and Base Concepts

Three important concepts are -

- (1) According to Arrhenius concept of acid and bases, an acid is a substance which gives H⁺ ions in the aqueous solution whereas a base is a substance which gives OH⁻ ions in the aqueous solution
- (2) According to Bronsted-Lowry concept of acids and bases, an acid is a substance which can give a proton and a base is a substance which accepts a proton. A substance which can act both as an acid as well as base in different reactions is called amphoteric

2. Basicity of Acid

 The number of displacing protons in an acid is known as basicity of the acid.

Monobasic acid has only one molecule of hydrogen ion and can combine with one hydroxyl (OH)group *e.g.*, HCl, HNO₃, CH₃COOH etc.

Dibasic acid has two hydrogen ions and hence can combine with two hydroxyl groups to give two kinds of salts. *e.g.*, H₂SO₄, H₂SO₃, (COOH)₂ etc.

Tribasic acid has three hydrogen ions and can combine with three hydroxyl groups to give three kinds of salts. *e.g.*, H₃PO₄ etc.

 Acidic strength of acids increase with increase in the size of atom.

e.g., HI > HCl > HF.

 Acidic strength of acids increase with increase in electronegativity of elements.

$$e.g., H-F > H-OH > H-NH_2 > H-CH_3$$

 Among oxyacids of some element, acidic strength increase with increase in the oxidation state of that element

$$e.g.$$
, HClO₄ > HClO₃ > HClO₂ > HClO
+ 7 + 5 + 3 + 1

3 Organic Acids

 Presence of electron releasing groups decreases the acidic strength of acid and react.

$$e.g.$$
, HCOOH > CH₃COOH > C₂H₅COOH >

C₃H₇COOH >

 Presence of electron with drawing group increase the acidity or acidic strength of acids.

$$e.g.$$
, $CF_3COOH > CCl_3COOH > CBr_3COOH$

 $> Cl_3COOH > CH_3COOH$

 Acid strength increase with increasing s-character in hybridization of carbon atom

$$e.g., H-C = C-H > CH_2 = CH_2 > CH_3 - CH_3$$

4. Acidity of Base

The number of hydroxyl ions in a base is known as acidity of the base.

Monoacidic bases: KOH, NH4OH, NaOH

Diacidic bases: Ca (OH)₂, Fe (OH)₂, Zn (OH)₂

Triacidic bases: Fe (OH)3, Al (OH)3

- Soluble base are known as alkali.
- KOH is a stronger base than NaOH.
- Ammonia is a stronger base than H₂O and the relative strength of Mg (OH)₂, Cu (OH)₂, Ba (OH)₂ is:

 $Mg (OH)_2 > Ca (OH)_2 > Ba (OH)_2$

- pH expresses the hydrogen ion concentration of a solution,
 - -pH = 7 for pure water (or neutral solutions)
 - -pH > 7 for bases
 - -pH < 7 for acids.
- Lower pH means more acidity.

5. Relative strengths of some important acids and bases

Acid	Conjugate base
HClO ₄	ClO_4^-
HI	I-
H ₂ SO ₄	HSO_4^-
H ₃ O ⁺	H_2O
HSO_4^-	SO_4^{2-}
CH ₃ COOH	CH ₃ COO-
NH_4^+	NH_3
HCO_3^-	CO_3^{2-}
H_2O	OH-
CH ₃ OH	CH_3O^-
NH ₃	NH_2^-
OH-	O ²⁻
H ₂	H-

6 Salts

Salts are regarded as compounds made up of positive and negative ions. The salts are generally crystalline solids. These are classified into the following classes:

- (1) **Simple salts**: The salts formed by neutralisation process, are of three types—
- (i) Normal salts are salts formed by the replacement of all replaceable hydrogen atoms at H^+ ions. For e.g. NaCl, KNO₃, CuSO₄, FeSO₄, etc.
- (ii) Acid salt formed by the incomplete neutralisation of polyprotic basic acids which still contain some acidic hydrogen are called acidic salts *e.g.* NaHCO₃, NaHSO₄, NaH₂PO₄, Na₂HPO₄ etc.
- (iii) Basic salt formed by incomplete neutralisation of poly acidic bases and still contains one or more than one hydroxyl groups e.g. Zn (OH) Cl, Mg (OH) Cl etc.
- (2) **Double salts**: The addition compounds formed by combination of two or more simple salts and are stable in solid state only. e.g., FeSO₄, $(NH_4)_2$ SO₄·6H₂O, K_2SO_4 ·Al₂ $(SO_4)_3$ ·24H₂O.
- (3) **Complex salts**: The salts formed by combination of simple salts or molecular compound and are stable in solid state and on dissolving in water, they finish at least one complex ion. *e.g.*, K₄ [Fe (CN)₆], [Cu (NH₃)₄] SO₄.
- (4) Mixed salts: The salts which furnish more than one cation or more than one anion when dissolved in

water. e.g., Ca< $< \frac{\text{OCI Na}}{\text{Cl K}} > \text{SO}_4 \text{ etc.}$